Alabama Course of Study Standard for 8th Grade Science

** The standards are organized in the order; in which, they are covered.**

1.) Identify steps within the scientific process.

- Applying process skills to interpret data from graphs, tables, and charts
- Identifying controls and variables in a scientific investigation
- Measuring dimension, volume, and mass using Système International d'Unités (SI units)
- Identifying examples of hypotheses
- Identifying appropriate laboratory glassware, balances, time measuring equipment, and optical instruments used to conduct an investigation

Standard 1: Terms to Know					
Bar Graph	Data	Hypothesis	mass	slope	
Control	Dependent variable	Independent variable	Scientific method	variables	
Constant	Experiment	Line graph	SI units	volume	

Common Lab Instruments (know function of each)					
Beaker	Graduated cylinder	Pipette	Striker	Test tube	
Bunsen burner	Lab coat or apron	Ring stand, ring clamps	Stirring rod	thermometer	
Erlenmeyer flask	Lab stand	Safety goggles	Spatulas /scoopulas	Tongs/forceps	
Funnel	Mortar and pestle	Scale	Stop watch	Triple beam balance	

Define matter and describe it based on its physical and chemical properties. *Matter is fundamental to study the chemistry portion of the Physical Science course of study: however, it is not included in the ALCOS.

7.) Describe states of matter based on kinetic energy of particles in matter.

	Matter & Standard 7: Terms to Know					
Matter	molecules	Gas	freezing	Physical		
				change		
Mass	Element	Solid	Boiling	Chemical		
				change		
Weight	Compound	Liquid	Evaporation	Physical		
				property		
Newton	mixture	Density	Condensation	Chemical		
				property		
Atom	Liters	melting	sublimation	States of		
				matter		
Volume						

Standard 2: Terms to Know				
Atom Isotope Proton				
Electron	Electron Neutron			
Ion Nucleus				

2.) Describe the structure of atoms, including the location of protons, neutrons, and electrons.

- Identifying the charge of each subatomic particle
- Identifying Democritus and Dalton as contributors to the atomic theory

3.) Determine the number of protons, neutrons, and electrons, and the mass of an element using the periodic table.

- Locating metals, nonmetals, metalloids, and noble gases on the periodic table
- Using data about the number of electrons in the outer shell of an atom to determine its reactivity

	Standard 3: Terms to Know					
Atom	Atomic	Atomic	Bohr	Electron		
	mass	number	diagram			
Element	Group	Half-life	ion	isotope		
	(family)					
Lewis Dot	Metal	Metalloid	Neutron	nonmetal		
Structure						
period	Periodic	Proton	radioactivity	Reactive		
	table			(reactivity)		
Transition	Valence					
metals	electron					

Standard 4 and 7.1: Terms to Know					
catalyst	Chemical	Chemical	Chemical	coefficient	
	equation	formula	reaction		
concentration	Endothermic	Exothermic	Law of	Rate of	
	reaction	reaction	conservation	reaction	
of mass					
Product	reactant	subscript	Surface area	temperature	

4.) State the law of conservation of matter.

• Balancing chemical equations by adjusting coefficients

7.1) Explaining effects of temperature, concentration, surface area, and catalysts on the rate of chemical reaction.

5.) Differentiate between ionic and covalent bonds.

• Illustrating the transfer or sharing of electrons using electron dot diagrams

	Standard 5: Terms to Know					
Anion	Bohr Diagram	Cation	Chemical bond	Compound		
Covalent bond	Element	lon	Ionic bond	Lewis Dot Structure		
molecule	Nonpolar covalent bond	Polar covalent bond	Valence electrons			

Standard 6: Terms to Know					
acid	Base	Concentration	Diffusion	Diluted (unsaturated)	
Hypertonic	Hypotonic	Isotonic	mixture	neutral	
Osmosis	pH scale	Saturated	Solubility	Solute	
Solution	Solvent	Suspension	supersaturated		

6.) Define solution in terms of solute and solvent.

• Defining diffusion and osmosis

• Defining isotonic, hypertonic, and hypotonic solutions

• Describing acids and bases based on their hydrogen ion concentration

8.) Identify Newton's three laws of motion.

- Defining terminology such as action and reaction forces, inertia, acceleration, momentum, and friction
- Interpreting distancetime graphs

	Standard 8: Terms to Know				
Acceleration	Action/reaction forces	Air resistance	Balanced forces	Collision	
Conservation of momentum	distance	Distance- time graph	Frame of reference	Friction	
Force	Gravity	Inertia	Mass	momentum	
Motion	Net force	Newton 1 st Law of Motion	Newton 2 nd Law of Motion	Newton 3 rd Law of Motion	
Position	Rate of change	Reference point	slope	Speed	
Time	Unbalanced forces	Vector	Velocity	Velocity- time graph	
weight					

Standard 9: Terms to Know					
Compound machine	distance	efficiency	Energy	fluid	
force	Friction	Fulcrum	horsepower	Inclined plane	
Joule	kinetic	lever	Machine	Mechanical advantage	
Mechanical energy	Potential	power	Pressure	Pulley	
screw	Simple machine	time	Watt	wedge	
Wheel and axle	work				

9.) Describe how mechanical advantages of simple machines reduce the amount of force needed for work.

• Describing the effect of force on pressure in fluids

Example: increasing force on fluid leading to increase of pressure within a hydraulic cylinder

10.) Differentiate between potential and kinetic energy.

Examples:
 potential-rock resting
at the top of a hill,
 kinetic-rock rolling
down a hill
xplain the law of

11.) Explain the law of conservation of energy and its relationship to energy transformation, including chemical to electrical, chemical to heat, electrical to light, electrical to mechanical, and electrical to sound.

	Standard 10 & 11: Terms to Know						
calorie	Chemical energy	Conduction	Convection	Electromagnetic energy			
Energy	Gas	Joule	Heat	Kinetic energy			
Kinetic theory of matter	Liquid	Mechanical energy	Nuclear energy	Potential energy			
Radiation	Solar energy	Solid	Specific heat	Temperature			
Thermal energy	Thermal expansion	thermometer					

12.) Classify waves as mechanical or electromagnetic.

Examples:

- mechanical-earthquake waves;
- electromagnetic-ultraviolet light waves, visible light waves
- Describing how earthquake waves, sound waves, water waves, and electromagnetic waves can be destructive or beneficial due to the transfer of energy
- Describing longitudinal and transverse waves
- Describing how waves travel through different media
- Relating wavelength, frequency, and amplitude to energy
- Describing the electromagnetic spectrum in terms of frequencies Example: electromagnetic spectrum in increasing frequencies-microwaves, infrared light, visible light, ultraviolet light, X rays

Standard 12: Terms to Know				
Amplitude	Crest	Decibel	Diffraction	Diffusion
Electromagnetic	Electromagnetic	Frequency	Gamma rays	Hertz
spectrum	waves			
Infrared light	intensity	Interference	Longitudinal wave	Mechanical waves
Medium (media)	Microwaves	Pitch	Radio waves	Reflection
Refraction	Transverse wave	trough	Ultraviolet light	Visible light
Wave	Wavelength	x-ray		